Publications

Publications reversed chronological order.

2024

  1. NeurIPS
    Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning
    In Neural Information Processing Systems 2024
  2. NeurIPS
    Recursive PAC-Bayes: A Frequentist Approach to Sequential Prior Updates with No Information Loss
    Y. Wu, Y. Zhang, B. Chérief-Abdellatif, and 1 more author
    In Neural Information Processing Systems 2024
  3. ICML
    Latent variable model for high-dimensional point process with structured missingness
    M. Sinelnikov, M. Haussmann, and H. Lähdesmäki
    In International Conference on Machine Learning 2024
  4. SPIGM
    Learning high-dimensional mixed models via amortized variational inference
    P. Ong, M. Haussmann, and H. Lähdesmäki
    In Structured Probabilistic Inference & Generative Modeling 2024
  5. AABI
    PAC-Bayesian Soft Actor-Critic Learning
    B. Tasdighi, A. AkgülM. Haussmann, and 2 more authors
    In Advances in Approximate Bayesian Inference Symposium 2024
  6. L4DC
    Continual Learning of Multi-modal Dynamics with External Memory
    A. Akgül, G. Unal, and M. Kandemir
    In Learning for Dynamics and Control 2024
  7. PR
    EdVAE: Mitigating codebook collapse with evidential discrete variational autoencoders
    G. BaykalM. Kandemir, and G. Unal
    In Pattern Recognition 2024
  8. TMLR
    The Cold Posterior Effect Indicates Underfitting, and Cold Posteriors Represent a Fully Bayesian Method to Mitigate It
    Y. Zhang, Y. Wu, L.A. Ortega, and 1 more author
    Transactions on Machine Learning Research 2024
  9. ICLR
    Calibrating Bayesian UNet++ for Sub-Seasonal Forecasting
    B. Asan, A. Akgül, A. Unal, and 2 more authors
    In Tackling Climate Change with Machine Learning at ICLR 2024 2024
  10. arXiv
    Deep Exploration with PAC Bayes
    B. Tasdighi, N. WergeY. Wu, and 1 more author
    arXiv Preprint 2024
  11. arXiv
    Disentanglement with Factor Quantized Variational Autoencoders
    G. BaykalM. Kandemir, and G. Unal
    arXiv Preprint 2024
  12. arXiv
    Exploring Pessimism and Optimism Dynamics in Deep Reinforcement Learning
    B. Tasdighi, N. WergeY.-s. Wu, and 1 more author
    arXiv Preprint 2024

2023

  1. arXiv
    Demystifying the Myths and Legends of Nonconvex Convergence of SGD
    A. Dutta, E.H. Bergou, S. Boucherouite, and 3 more authors
    arXiv Preprint 2023
  2. arXiv
    On Adaptive Stochastic Optimization for Streaming Data: A Newton’s Method with O(dN) Operations
    A. Godichon-Baggioni, and N. Werge
    arXiv Preprint 2023
  3. arXiv
    BOF-UCB: A Bayesian-Optimistic Frequentist Algorithm for Non-Stationary Contextual Bandits
    arXiv Preprint 2023
  4. arXiv
    If there is no underfitting, there is no Cold Posterior Effect
    Y. Zhang, Y. Wu, L.A. Ortega, and 1 more author
    arXiv Preprint 2023
  5. NeurIPS
    Improved Algorithms for Stochastic Linear Bandits Using Tail Bounds for Martingale Mixtures
    H. Flynn, D. Reeb, M. Kandemir, and 1 more author
    In Neural Information Processing Systems 2023
  6. ACML
    Estimation of Counterfactual Interventions under Uncertainties
    J. Weilbach, S. Gerwinn, M. Kandemir, and 1 more author
    In Asian Conference on Machine Learning 2023
  7. T-PAMI
    PAC-Bayes Bounds for Bandit Problems: A Survey and Experimental Comparison
    H. Flynn, D. Reeb, M. Kandemir, and 1 more author
    IEEE Transactions on Pattern Analysis and Machine Intelligence 2023
  8. MDPI
    ALReg: Registration of 3D Point Clouds Using Active Learning
    Y.H. Sahin, O. Karabacak, M. Kandemir, and 1 more author
    MDPI Applied Sciences 2023
  9. TMLR
    Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
    A. Look, B. Rakitsch, M. Kandemir, and 1 more author
    Transactions on Machine Learning Research 2023
  10. TMLR
    Meta Continual Learning on Graphs with Experience Replay
    A. Unal, A. AkgülM. Kandemir, and 1 more author
    Transactions on Machine Learning Research 2023

2022

  1. NeurIPS
    Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
    C. Yildiz, M. Kandemir, and B. Rakitsch
    In Neural Information Processing Systems 2022
  2. ICLR
    Evidential Turing Processes
    M. KandemirA. AkgülM. Haussmann, and 1 more author
    In International Conference on Learning Representations 2022
  3. T-PAMI
    A Deterministic Approximation to Neural SDEs
    A. Look, M. Kandemir, B. Rakitsch, and 1 more author
    IEEE Transactions on Pattern Analysis and Machine Intelligence 2022
  4. L4DC
    Traversing Time with Multi-Resolution Gaussian Process State-Space Models
    K. Longi, J. Lindinger, O. Duennbier, and 3 more authors
    In Learning for Dynamics and Control 2022
  5. DMKD
    PAC-Bayesian lifelong learning for multi-armed bandits
    H. Flynn, D. Reeb, M. Kandemir, and 1 more author
    Data Mining and Knowledge Discovery 2022